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Abstract. State-of-the-art process discovery methods construct free-choice pro-
cess models from event logs. Hence, the constructed models do not take into
account indirect dependencies between events. Whenever the input behavior is
not free-choice, these methods fail to provide a precise model. In this paper, we
propose a novel approach for the enhancement of free-choice process models,
by adding non-free-choice constructs discovered a-posteriori via region-based
techniques. This allows us to benefit from both the performance of existing pro-
cess discovery methods, and the accuracy of the employed fundamental synthesis
techniques. We prove that the proposed approach preserves fitness with respect
to the event log, while improving the precision when indirect dependencies exist.
The approach has been implemented and tested on both synthetic and real-life
datasets. The results show its effectiveness in repairing process models discov-
ered from event logs.

1 Introduction

Process mining is a family of methods used for the analysis of event data [1]. These
methods include process discovery aimed at constructing process models from event
logs; conformance checking applied for finding deviations between real (event logs)
and expected (process models) behavior [13]; and process enhancement used for the
enrichment of process models with additional data extracted from event logs. The latter
also includes process repair applied to realign process models in accordance with the
event logs. Event logs are usually represented as sequences of events (or traces). The
main challenge of process discovery is to efficiently construct fitting (capturing traces
of the event log), precise (not capturing traces not present in the event log) and simple
process models.

Scalable process discovery methods, which are most commonly used for the anal-
ysis of real-life event data, either produce directly follows graphs, or use them as an
intermediate process representation to obtain a Petri net or a BPMN model [24] (see
e.g. Inductive miner [21] and Split miner [5]). Directly follows graphs are directed
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graphs with nodes representing process activities and arcs representing the directly fol-
lows (successor) relation between them. Being simple and intuitive, these graphs con-
siderably generalise process behaviour, e.g., they add combinations of process paths
that are not observed in the event log. This is because they do not represent higher-
level constructs such as parallism and long distance (i.e., non-local) dependencies. The
above-mentioned discovery methods construct directly follows graphs from event logs
and then recursively find relations between sets of nodes in these graphs, in order to dis-
cover a free-choice Petri net [15], which can then be seemlessly converted into a BPMN
model – the industry language for representing business process models. In free-choice
nets, the choice between conflicting activities (such that only one of them can be exe-
cuted) is always “free” from additional preconditions. Although parallel activities can
be modeled by free-choice nets, non-local choice dependencies are modeled by non-
free-choice nets [30]. Several methods for the discovery of non-free-choice Petri nets
exist. However, these methods are either computationally expensive [11,3,29,31,8], or
heuristic in nature (i.e., the derived models may fail to replay the traces in the event
log) [30]. Even these methods are not heuristic and demonstrate reasonable perfor-
mance, they usually produce process models with complex structure [32,22]. In con-
trast, the approach proposed in this paper, starts with a simple free-choice “skeleton”
enhancing it with additional modeling constructs.

In this paper, we propose a repair approach for the enhancement of free-choice
nets by adding extra constructs to capture non-local dependencies. To find non-local
dependencies, a transition system constructed from the initial event log is analyzed.
This analysis checks whether all the free-choice constructs of the initial process model
correspond to free-choice relations in the transition system. For process activities with
non-free-choice relations in the transition system but with free-choice relation in the
Petri net, region theory [7] is applied to identify, whenever possible, additional places
and arcs to be added to the Petri net to ensure the non-local relations between the cor-
responding transitions. Remarkably, although we have implemented our approach over
state-based region theory [11,3,29], the proposed approach can be also extended to
language-based region theory [31,9], or to geometric or graph-based approaches that
have been recently proposed [10,28].

Importantly, we apply a goal-oriented state-based region algorithm, to those parts
of the transition system where the free-choice property is not fulfilled. This allows us
to reduce the computation time, relegating region-theory to when it is really needed.
We prove that important quality metrics of the initial free-choice (workflow) net are
either preserved, or improved for those cases where non-local dependencies exist, i.e.,
fitness is never reduced and precision can increase. Hence, when using our approach on
top of an automated discovery method that returns a free-choice Petri net, one can still
keep the complexity of process discovery manageable, obtaining more precise process
models that represent more faithfully the process behavior recorded in the event log.

In contrast to the existing process repair techniques, which change the structure
of the process models by inserting, removing [25,4,17] or replacing tasks and sub-
processes [23], the approach proposed in this paper only imposes additional restric-
tions on the process model behavior, preserving fitness and improving precision where
possible.
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We implemented the proposed approach as a plugin of Apromore [20]3 and tested
it both on synthetic and real-world event data. The tests show the effectiveness of our
approach within reasonable time bounds.

The paper is organized as follows. Section 2 illustrates the approach by a motivating
example. Section 3 contains the main definitions used throughout the paper. The state-
based region technique is introduced in Section 4. The proposed model repair approach
is then described in Section 5. Additionally, Section 5 contains formal proofs of the
properties of the repaired process model. High-level process modeling constructs, e.g.,
BPMN modeling elements representing non-free-choice routing are also discussed in
Section 5. The results of the experiments are presented in Section 6. Finally, Section 7
concludes the paper.

2 Motivating Example

This section presents a simple motivating example inspired by real-life BPIC’2017 event
log4 and examples discussed in [30]. Consider a process of loan application. The pro-
cess can be carried out by a client or by a bank employee on behalf of the client. Thus,
this process can be described by two possible sequences of events (traces) which to-
gether can be considered as an event log: L ={〈send application, check application,
notify client , accept application〉, 〈create application, check application, complete
application, accept application〉}. According to one trace, the client sends a loan ap-
plication to the bank, then this application is checked, after that the client is notified
and the application is accepted. The other trace corresponds to a scenario when the ap-
plication is initially created by a bank employee, then it is checked, after that, the bank
employee contacts the client to complete the application, and finally, the application
is accepted. Figure 1 presents a workflow net discovered by Inductive miner [21] and
Split miner [5] from L. This model accepts two additional traces: 〈send application,
check application, complete application, accept application〉, 〈create application,
check application, notify client , acceptapplication〉 not presented in L. These traces

send application

create application

check application

notify client

complete application

accept application

Fig. 1. A workflow net discovered from L by Inductive miner and Split miner.

violate the business logic of the process. If the application was sent by a client, it is com-
3 https://apromore.org
4 https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
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pleted, and there is no need to take complete application step. Also, if the application
was initially created by a bank employee, the step complete application is mandatory.

This example demonstrates that the choice between notify client and complete
application activities depends on the history of the trace. The transition system in Fig-
ure 2 shows a behavior recorded in event log L (Figure 2). State s1 corresponds to a
choice between activities send application and create application . This choice does
not depend on any additional conditions. In contrast, for the system being in states s4
and s5 there is no free choice between notify client and complete application activi-
ties; in state s4 only notify client step can be taken, in s5 only complete application
can be performed. This means that there are states in the transition system where activi-
ties notify client and complete application are not in a free-choice relation (the choice
depends on additional conditions and is predefined), while they are in a free-choice re-
lation within the discovered model (Figure 1).

To impose additional restrictions on the process model the state-based region the-
ory can be applied [14,12,29]. Figure 2 presents three regions r1 = {s4, s5}, r2 =
{s2, s4}, and r3 = {s3, s5} with outgoing transitions labeled by notify client and
complete application events discovered by the state-based region algorithm [29].

send
 application

create
application

notify
 client

complete
 application

accept appl ication

s1 s6 s7

r2s2 s4
check

 application

r1

check
 applications3 s5

r3

Fig. 2. Transition system that encodes event log L.

Figure 3 presents a target workflow net obtained from the initial workflow net (Fig-
ure 1) by inserting places which correspond to the discovered regions. As one may note,
in addition to r1, two places r2 and r3 were added. These places impose additional con-
straints, such that the enhanced process model accepts event log L and does not support
additional traces and, hence, is more precise.

send application

create application

check application

notify client

complete application

accept application

r1

r2

r3

Fig. 3. A workflow net enhanced with additional regions (places) r2 and r3.

In the next sections, we formalise this technique and apply it to event data.
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3 Preliminaries

In this section, we formally define event logs and process models, such as transition
systems, Petri nets, and workflow nets.

3.1 Sets, Multisets, Event Logs

Let S be a finite set. A multiset m over S is a mapping m : S → N0, where N0 is
the set of all natural numbers (including zero), i.e., multiset m contains m(s) copies of
element s ∈ S.

For two multisetsm,m′ we writem ⊆ m′ iff ∀s ∈ S : m(s) ≤ m′(s) (the inclusion
relation). The sum of two multisets m and m′ is defined as: ∀s ∈ S : (m +m′)(s) =
m(s) +m′(s). The difference of two multisets is a partial function: ∀s ∈ S, such that
m(s) ≥ m(s′), (m−m′)(s) = m(s)−m′(s).

Let E be a finite set of events. A trace σ (over E) is a finite sequence of events,
i.e., σ ∈ E∗, where E∗ is the set of all finite sequences over E, including the empty
sequence of zero length. An event log L is a set of traces, i.e., L ⊆ E∗.

3.2 Transition Systems, Petri Nets, Workflow Nets

Let S and E be two disjoint non-empty sets of states and events, and B ⊆ S × E × S
be a transition relation. A transition system is a tuple TS = (S,E,B, si , Sfin), where
si ∈ S is an initial state and Sfin ⊆ S – a set of final states. Elements of B are called
transitions. We write s e→ s′, when (s, e, s′) ∈ B and s e→, when ∃s′ ∈ S, such that
(s, e, s′) ∈ B; s 6 e→, otherwise.

A trace σ = 〈e1, . . . , en〉 is called feasible in TS iff ∃s1, . . . , sn ∈ S : si
e1→ s1

e2→
. . .

en→ sn, and sn ∈ Sfin , i.e., a feasible trace leads from the initial state to some final
state. A language accepted by TS is defined as the set of all traces feasible in TS, and is
denoted by L(TS).

We say that a transition system TS encodes an event log L iff each trace from L is a
feasible trace in TS, and inversely each feasible trace in TS belongs to L. An example of
a transition system is shown in Figure 2. States and transitions are presented by vertices
and directed arcs respectively. The initial state s1 is marked by an additional incoming
arrow, the only final state s7 is indicated by a circle with double border.

Let P and T be two finite disjoint sets of places and transitions, and F ⊆ (P ×
T ) ∪ (T × P ) be a flow relation. Let also E be a finite set of events, and l : T → E
be a labeling function, such that ∀t1, t2 ∈ T, t1 6= t2, it holds that l(t1) 6= l(t2), i.e., all
the transitions are uniquely labeled. Then N = (P, T, F, l) is a Petri net.

A marking in a Petri net is a multiset over the set of its places. A marked Petri net
(N,m0) is a Petri net N together with its initial marking m0.

Graphically, places are represented by circles, transitions by boxes, and the flow
relation F by directed arcs. Places may carry tokens represented by filled circles. A
current markingm is designated by puttingm(p) tokens into each place p ∈ P . Marked
Petri nets are presented in Figures 1 and 3.
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For a transition t ∈ T , an arc (p, t) is called an input arc, and an arc (t, p) an output
arc, p ∈ P . The preset •t and the postset t• of transition t are defined as the multisets
over P , such that •t(p) = 1, if (p, t) ∈ F , otherwise •t(p) = 0, and t•(p) = 1 if
(t, p) ∈ F , otherwise t•(p) = 0. A transition t ∈ T is enabled in a marking m iff
•t ⊆ m. An enabled transition t may fire yielding a new marking m′ =def m− •t+ t•

(denoted m t→ m′, m
l(t)→ m′, or just m → m′). We say that mn is reachable from

m1 iff there is a (possibly empty) sequence of firings m1 → . . .→ mn and denote this
relation by m1

∗→ mn.
R(N,m) denotes the set of all markings reachable in Petri net N from marking m.

A marked Petri net (N,m0), N = (P, T, F, l) is safe iff ∀p ∈ P,∀m ∈ R(N,m0) :
m(p) ≤ 1, i.e., at most one token can appear in a place.

A reachability graph of a marked Petri net (N,m0), N = (P, T, F, l), with a label-
ing function l : T → E, is a transition system TS = (S,E,B, si , Sfin) with the set of
states S = R(N,m0) and transition relationB defined by (m, e,m′) ∈ B iffm t→ m′,
where e = l(t). The initial state in TS is the initial marking m0. If some reachable
markings in (N,m0) are distinguished as final markings, they are defined as final states
in TS. The language of a Petri net (N,m0), denoted by L(N,m0) is the language of its
reachability graph, i.e., L(N,m0) = L(TS). We say that a Petri net (N,m0) accepts a
trace iff this trace is feasible in the reachability graph of (N,m0); a Petri net accepts a
language iff this language is accepted by its reachability graph.

Given a Petri net N = (P, T, F, l), two transitions t1, t2 ∈ T are in a free-choice
relation iff •t1 ∩ •t2 = ∅ or •t1 = •t2. Since we consider Petri nets with uniquely
labeled transitions, we also say that events (or activities) l(t1) and l(t2) are in a free-
choice relation. Petri net N is called free-choice iff for all t1, t2 ∈ T , it holds that t1
and t2 are in a free-choice relation. This is one of the several equivalent definitions for
free-choice Petri nets presented in [15]. A Petri net is called non-free-choice iff it is not
free-choice. Figure 4 presents an example of a non-free-choice Petri net, where for two
transitions t1 and t2 holds that •t1 ∩ •t2 = {p1, p2} 6= ∅ and •t1 = {p1, p2} 6= •t2 =
{p1, p2, p3}.

p1 p2 p3

t1 t2

Fig. 4. A non-free-choice Petri net.

The choice of which transition will
fire depends on an additional constraint
imposed by place p3. If m(p1) > 0,
m(p2) > 0, and m(p3) = 0, then
only t1 is enabled, thus there is no
free-choice between t1 and t2. Another
example of a non-free-choice Petri net
was presented earlier in Figure 3, where
transitions labeled by notify client and
complete application are not in a free-

choice relation, thus the Petri net is not free-choice. An example of a free-choice Petri
net is presented in Figure 1.

Workflow nets is a special subclass of Petri nets designed for modeling workflow
processes [2]. A workflow net has one initial and one final place, and every place or
transition is on a directed path from the initial to the final place.
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Formally, a marked Petri net N = (P, T, F, l) is called a workflow net iff

1. There is one source place i ∈ P and one sink place o ∈ P , such that i has no input
arcs and o has no output arcs.

2. Every node from P ∪ T is on a directed path from i to o.
3. The initial marking contains the only token in its source place.

We denote by [i] the initial marking in a workflow netN . Similarly, we use [o] to denote
the final marking in a workflow net N , defined as a marking containing the only token
in the sink place o. The language of workflow net N is denoted by L(N).

A workflow net N with the initial marking [i] and the final marking [o] is sound iff

1. For every state m reachable in N , there exists a firing sequence leading from m to
the final state [o]. Formally, ∀m : [([i]

∗→ m) implies (m ∗→ [o])];
2. The state [o] is the only state reachable from [i] in N with at least one token in

place o. Formally, ∀m : [([i]
∗→ m) ∧ ([o] ⊆ m) implies (m = [o])];

3. There are no dead transitions in N . Formally, ∀t ∈ T ∃m,m′ : ([i] ∗→ m
l(t)→ m′).

Note that both models presented in Figures 1 and 3 are sound workflow nets.

4 Region State-Based Synthesis

In this section, we give a brief description of the well-known state-based region algo-
rithm [14] applied for the synthesis of Petri nets from transition systems.

Let TS = (S,E, T, si , Sfin) be a transition system and r ⊆ S be a subset of states.
Subset r is a region iff for each event e ∈ E one of the following conditions holds:

– all the transitions s1
e→ s2 enter r, i.e., s1 /∈ r and s2 ∈ r,

– all the transitions s1
e→ s2 exit r, i.e., s1 ∈ r and s2 /∈ r,

– all the transitions s1
e→ s2 do not cross r, i.e., s1, s2 ∈ r or s1, s2 /∈ r.

In other words, all the transitions labeled by the same event are of the same type
(enter, exit, or do not cross) for a particular region.

A region r′ is said to be a subregion of a region r iff r′ ⊆ r. A region r is called a
minimal region iff it does not have any other subregions.

The state-based region algorithm covers the transition system by its minimal re-
gions [16]. Figure 5 presents the transition system from Figure 2 covered by minimal
regions: r1 = {s4, s5}, r2 = {s2, s4}, r3 = {s3, s5}, r4 = {s2, s3}, r5 = {s6},
r6 = {s1}, and r7 = {s7}. According to the algorithm in [14], every minimal region is
transformed to a place within the target Petri net and connected with transitions corre-
sponding to the exiting and entering events by outgoing and incoming arcs respectively
(refer to Figure 6) .

Region r separates two different states s, s′ ∈ S, s 6= s′, iff s ∈ r and s′ /∈ r.
Finding such a region is the state separation problem between s and s′ and is denoted by
SSP(s, s′). When an event e is not enabled in a state s, i.e., s 6 e→, a region r, containing
s may be found, such that e does not exit r. Finding such a region is known as the
event/state separation problem between s and e and is denoted by ESSP(s, e).

A well-known result in region theory establishes that if all SSP and ESSP problems
are solved, then synthesis is exact [7]:
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send
 application

create
application

notify
 client

complete
 application

accept appl ication
s1

s6 s7

r2s2 s4
check

 application

r1

check
 applications3 s5

r3

r4
r5r6 r7

Fig. 5. Applying the state-based region algorithm to the transition system presented in Figure 2.

Theorem 1. A TS can be synthesized into a safe Petri net N such that the reachability
graph of N is isomorphic to TS if all SSP and ESSP problems are solvable.

These problems are also known to be NP-complete [7]. In this paper, we reduce the
size of the problem by constructing regions corresponding to particular events only.

send application

create application

check application

notify client

complete application

accept application

r1

r2

r3

r4
r6

r5
r7

Fig. 6. A Petri net model synthesized from the transition system presented in Figure 5.

5 Repairing Free-Choice Process Models

In this section, we describe our approach for repairing free-choice workflow nets using
non-local constraints captured in the event logs. Additionally, we investigate formal
properties of the repaired process models.

5.1 Problem Definition

LetN be a free-choice workflow net discovered from event log L and let TS be a transi-
tion system encoding L. Due to limitations of the automated discovery methods [21,5]
that construct free-choice workflow nets, not all the places that correspond to minimal
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regions may have been derived, and therefore important SSP /ESSP problems may not
be solved in N , when consideringR(N, [i]) as the behavior to represent with N .

This brings us to the following characterization of the problem. Let t1, . . . , tn be
transitions in N with •t1 = •t2 = . . . = •tn, i.e., t1, . . . , tn are in the free-choice
relation in N , and let TS = (S,E, T, si , Sfin) be a minimal transition system encoding
the event log L. If there exists a state s ∈ S, and 1 ≤ i < j ≤ n such that:

1. ei, ej correspond to transitions ti, tj , respectively,
2. s ei→,
3. s 6 ej→

Then, the relation of t1, . . . , tn in N corresponds to a false free-choice relation, not
observed in TS.

There is no place in N corresponding to a region that solves the ESSP(s, ej) prob-
lem, because t1, . . . , tn are in a free-choice relation in N . For instance, the Petri net
in Figure 1 contains places corresponding to regions r1, r4, r5, r6, and r7 shown in
Figure 5, and none of those regions solves the ESSP(s4, complete application) and
ESSP(s5,notify client) problems in the transition system.

Note that we define the notion of a false free-choice relation for a minimal transition
system (transition system with a minimal number of states [19]) encoding the event log.
This is done in order to avoid a case when there exists a state s′ which is equivalent to
s, such that s′

ej→. During the minimization these equivalent states will be merged into
one state with outgoing transitions labeled by ei and ej showing that there is no false
free-choice relation between corresponding transitions. Another reason to minimize the
transition system is to reduce the number of states being analyzed.

Note that there is no guarantee that an ESSP problem can be solved. Nevertheless,
in the running example, regions r2 and r3 solve ESSP(s4, complete application) and
ESSP(s5,notify client) problems.

5.2 Algorithm Description

In this subsection, we present an algorithm for enhancement of a free-choice work-
flow net N with additional constraints from event log L (Algorithm 1). Firstly, by ap-
plying ConstructMinTS , a minimal transitional system encoding the event log L is
constructed.5 Then, false free-choice relations and corresponding ESSP problems are
identified. According to the definition of a false free-choice relation presented earlier,
procedure FindFalseFreeChoiceRelations is polynomial in time. Indeed, to find all the
false free-choice relations one needs to check whether all the states of a transition sys-
tem have none or all outgoing transitions labeled by events assumed to be in free-choice
relations within the original workflow net N . When the false free-choice relations are
discovered, for each corresponding ESSP problem function ComputeRegionsESSP ,
which finds regions solving the ESSP problem, is applied. Since the problem of find-
ing minimal regions which solve ESSP problem is known to be NP-complete, this is

5 Transition system can be constructed from the event log as a prefix-tree [3] with subsequent
minimization [19].
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Algorithm 1: RepairFreeChoiceWorkflowNet
Input: Free-choice workflow net N ; Event log L.
Output: Repaired net N ′ obtained from N by inserting additional non-local constraints.

1 /* Construct minimal transition system */
2 TS ← ConstructMinTS(L);

3 /* Compute ESSP problems */
4 ESSPProblems ← FindFalseFreeChoiceRelations(N,TS);

5 N ′ ← N ;

6 foreach (s, e) fromESSPProblems do
7 /* Solve ESSP(s, e) */
8 Y ← ComputeRegionsESSP(TS,s,e);

9 if (Y 6= ∅) then
10 /* ESSP(s, e) has been solved */
11 N ′ ← AddNewConstraints(N ′,Y );

12 end
13 return N ′

the most time complex part of Algorithm 1. However, in contrast to the original syn-
thesis approach, we do not solve ESSP problems for all the events in the net reducing
the size of the problem. For instance, let E ⊆ E be the set of events that need to be
checked. Let e ∈ E, and S′ be the states that have incoming or outgoing transitions
labeled by e. Then we need to consider O(2|S|−|S

′|) regions, such that e enters them

(for |S′| states their inclusion to the region is predefined) and O(2|S|−
⌈

|S′|
2

⌉
) regions,

such that e does not cross them (for |S
′|
2 states their inclusion to the region depends on

the other |S
′|
2 states). Hence we need to consider O(|E| · 2|S|−

⌈
|S′|
2

⌉
) (|S′| is the mini-

mal for all the events from E) possible regions in contrast to the original region-based
approach which exhaustively considers all O(2|S|) possible regions. Finally, if new re-
gions solving ESSP problems are found, function AddNewConstraints is applied and
corresponding constraints (places) are added to the target workflow net N ′.

5.3 Formal Properties

In this subsection, we prove formal properties of Algorithm 1. Firstly, we study the
relation between the languages of the initial and target workflow nets. Theorem 2 proves
that if a trace fits the initial model (initial model accepts the trace), it also fits the target
model. Although the proof seems trivial, we need to consider different cases in order to
verify that the final marking with only one token in the final place is reached.

Theorem 2 (Fitness). Let σ ∈ L be a trace of an event log L ∈ E∗, and N =
(P, T, F, l), l : T → E be a free-choice workflow net, such that its language con-
tains σ, i.e., σ ∈ L(N). Workflow net N ′ = (P ∪ P ′, T, F ′, l), l : T → E, is obtained
from N and L using Algorithm 1. Then the language of N ′ contains σ, i.e., σ ∈ L(N ′).
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Proof. Let us prove that an insertion of a single place by Algorithm 1 preserves the abil-
ity of the workflow net to accept trace σ. Consider a place r (Figure 7 b.) constructed
from the corresponding region r (Figure 7 a.) with entering events b1, ..., bm and exiting
events a1, ..., ap. Events a1, ..., ap can belong to a larger set of events a1, ..., ap, ..., ak
which are in a free-choice relation within N . Let us consider the workflow net N ′ with
a new place r (the fragment of N ′ is presented in Figure 7 b.). Next, we consider the
following four cases:

1. Suppose σ = 〈e1, ..., el〉 ∈ L does not contain events from {b1, ..., bm} and {a1, ...,
ap} sets. Since σ ∈ L(N), there is a sequence of firings in N : [i] e1→ m1

e2→ ...
el→

[o], where [i] and [o] are the initial and final markings of the workflow net respec-
tively. The same sequence of firings can be repeated within the target workflow net
N ′, because σ does not contain events from the sets {b1, ..., bm} and {a1, ..., ap},
and the place r is not involved in this sequence of firings.

b1

r

a1 ak...

b1 b2 bm...

r

bm

ap ...

a1 ap

...

...

a. b.

Fig. 7. a. A fragment of a transition system that encodes L. b. A fragment of N ′.

2. Now let us consider trace σ = 〈e1, ..., bi, ..., aj , ..., el〉 in which each occurrence
of event bi from the set {b1, ..., bm} is followed by an occurrence of event aj from
{a1, ..., ap}. Similarly, for the firing sequence within N : [i] e1→ m1

e2→ ...
bi→ mi →

...→ mj
aj→ ...

el→ [o], there is a corresponding sequence [i] e1→ m1
e2→ ...

bi→ m′i →
... → m′j

aj→ ...
el→ [o] for N ′, such that ∀p ∈ P : m′i(p) = mi(p), m′i(r) > 0,

∀p ∈ P : m′j(p) = mj(p), and m′j(r) > 0.

3. Consider trace σ where an event from {b1, ..., bm} is not followed by an event from
{a1, ..., ap}. More precisely, there are two possible cases: (1) trace σ contains an
event from {b1, ..., bm} and does not contain an event from {a1, ..., ap}; (2) an
occurrence of an event from set {b1, ..., bm} is followed by another occurrence
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of an event from the same set {b1, ..., bm} and only after that an event from the set
{a1, ..., ap}may follow. For the case (1), it is possible that the final state so belongs
to the region r (Figure 8 a.).

b1

r

bm

ap

...

...

a1

cd

b1

...
bm

...

si
so

a1 ap

a. b.

r

Fig. 8. Fragments of a transition system that encodes L.

Let us show that state so forms a region itself. Since the transition system con-
structed from the event log L was minimized, state so consolidates all the final
states of the initial transition system. Let f1, .., fs be events labeling incoming tran-
sitions (Figure 9 a.). These events correspond to workflow net transitions connected
with place o by outgoing arcs (Figure 9 b.).
If transitions labeled by these events appear in other parts of the transition system
(they are not final), then the initial workflow net N does not accept traces with
these events. This can be proven by the fact that N is uniquely labeled and hence
for marking m reachable by firing an event from {f1, .., fs} it holds that m(o) > 0
and ∃p ∈ P : p 6= o,m(p) > 0. Obviously, from m the final marking [o] cannot
be reached in a workflow net. Thus, we have shown that there is another region
r′ = {s0} ⊆ r, and r is not a minimal. This contradicts Algorithm 1 which builds
minimal regions, and hence so /∈ r.

The other possible scenario for the cases (1) and (2), is that the trace σ does not
terminate inside region r. In both cases, there is a transition labeled by an event
c /∈ {a1, ..., ap} which exits region r (Figure 7 b.). While it is obvious for the case
(1), for the case (2) this can be proven by the fact that there are two occurrences of
events from {b1, ..., bm} with no occurrences of events from {a1, ..., ap} in between,
and hence the trace σ leaves the region r in order to enter it again with a transition
labeled by an event from {b1, ..., bm}. Having a new exiting event c /∈ {a1, ..., ap}
contradicts the definition of the region r which has {a1, ..., ap} as a set of exiting
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r' ...

f1 fs
...

a. b.

so

f1 fs

o

Fig. 9. Final state of N .

events. Thus, we have proven that there is no such a trace in the initial event log
containing an event from the set {b1, ..., bm} which is not followed by an event from
the set {a1, ..., ap}.

4. Consider the last possible case when an event from {a1, ..., ap} is not preceded
by an event from {b1, ..., bm} in trace σ. Here again we can distinguish two situa-
tions: (1) σ contains an event from {a1, ..., ap} and does not contain an event from
{b1, ..., bm}; (2) the occurrence of an event from {a1, ..., ap} is firstly preceded
by another occurrence of an event from {a1, ..., ap} which in its turn can be pre-
ceded by an event from {b1, ..., bm}. Just like in the previous case, two scenarios
are possible: the trace starts inside the region r (Figure 8 a.) or there is a transition
entering r and labeled by an event d /∈ {b1, ..., bm} (Figure 8 b). Similarly to the
previous case, we can prove that in these scenarios r is not a minimal region with
entering and exiting events {b1, ..., bm} and {a1, ..., ap}, respectively.

Thus, we have proven that if a place corresponding to a region constructed by the
Algorithm 1 is added to the initial workflow net N then all the traces form L accepted
by N are also accepted by the resulting workflow net N ′.

ut

The following theorem states that the resulting model cannot be less precise than
the initial process model, i.e., it cannot accept new traces which were not accepted by
the initial model.

Theorem 3 (Precision). Let N = (P, T, F, l), l : T → E, be a free-choice workflow
net and let L be an event log over set of events E. If workflow net N ′ is obtained from
N and L by Algorithm 1, then the language of N contains the language of N ′, i.e.,
L(N ′) ⊆ L(N).

Proof. The proof follows from the well-known result that addition of new places (pre-
conditions) can only restrict the behavior and, hence, the language of the Petri net [27].

ut

Next, we formulate and prove a sufficient condition for the soundness of resulting
workflow nets. This condition is formulated in terms of the state-based region theory.

Theorem 4 (Soundness). Let L be an event log over set E. Let N = (P, T, F, l),
l : T → E be a sound free-choice workflow net. Suppose that workflow net N ′ =
(P ∪ P ′, T, F ′, l) is obtained from N and L by applying Algorithm 1 to one set of
events in a free-choice relation within N . Suppose also that {r(1), ..., r(n)} is a set
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of regions constructed at line of 8 Algorithm 1 in the transition system encoding L

(Figure 10 b.). Let E(1)
ent = {b(1)1 , ..., b

(1)
m }, ..., E(n)

ent = {b(n)1 , ..., b
(n)
t } and E

(1)
exit =

{a(1)1 , ..., a
(1)
p }, ..., E(n)

exit = {a(n)1 , ..., a
(n)
k } be sets of entering and exiting events for

the regions r(1), ..., r(n) respectively. Consider unions of these sets: Eent = E
(1)
ent ∪

... ∪ E(n)
ent and Eexit = E

(1)
exit ∪ ... ∪ E

(n)
exit . If there exists a (not necessarily minimal)

region r in the reachability graph of N (Figure 10 a.) with entering and exiting sets of
events Eent and Eexit , respectively, which does not contain states corresponding to [i]
(initial) and [o] (final) markings of N , then N ′ is sound.

b1

a1
...

b1 bm...

r1

bm

ap
...

a1
a. b.

a1

...

(1)
(1)

...

bt
(n)b1

(n)

(1) (1)
b1 bt...

rn

(n) (n)

p*

...

(1)

ap
(1) (n)

ak
(n)

a1
(n)

ak
(n)(1) (1)

r

Fig. 10. a. A fragment of the reachability graph of N . b. A fragment of N ′.

Proof. Repeating the proof of Theorem 2 and taking into account that the initial and
final states of the reachability graph of N do not belong to the region r, we can state
that there is a following relation between Eent and Eexit within L(N), i.e, for each
trace, each occurrence of the event from Eent is followed by an occurrence of the event
from Eexit and there are no other occurrences of events from Eent between them.

The firing sequences of N ′ which do not involve firings of transitions labeled by
events from Eent and Eexit repeat the corresponding firing sequences of N and do not
violate the soundness of the model.

Let us consider a firing sequence of N ′ which involves firings of transitions labeled
by events from Eent and Eexit . Consider b ∈ Eent , the firing sequence enabling and
firing b in N ′: [i] ∗→ m′1

b→ m′2, corresponds to the firing sequence performed by N :

[i]
∗→ m1

b→ m2, where ∀p ∈ P : m1(p) = m′1(p), m2(p) = m′2(p). Without loss of
generality suppose that b ∈ E(i)

ent , then m′2(r
i) = 1, where ri is a place constructed by

Algorithm 1.
Since Eent and Eexit events are in a following relation within L(N), they are in the

following relation within L(N ′), because L(N ′) ⊆ L(N). Consider sequences of steps
leading to some of the events from Eexit . These firing sequences will be:m′2

∗→ m′3 and
m2

∗→ m3, where m3(p) = m′3(p) and m′3(r
i) = 1, in N ′ and N respectively.
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In model N ′ only transitions labeled by the events from Ei
exit will be enabled in

m′3, because according to Algorithm 1, the new preceding places are added only if they
can be found for all the events from Eexit . Thus all other activities Eexit have their
preceding places empty in the marking m′3: m′3(r

j) = 0, i 6= j.
In workflow net N ′ it holds that m′3(r

i) = 1 and m′3(p
∗) = 1 (p∗ is a choice place

for the transitions in a free-choice relation withinN , see Figure 10 b.) and hence a step:
m′3

a→ m′4, where a ∈ E(i)
exit can be performed. After a is fired the place ri is emptied. A

corresponding firing step in N : m3
a→ m4 can be taken, because m3(p

∗) = 1, and all
the transitions labeled by events from Eexit are enabled inm3. These steps lead models
to the same markings: ∀p ∈ P : m4(p) = m′4(p) from which firing the same transitions
the final marking [o] can be reached. If the rest sequence of firings contains events from
Eent and Eexit , we repeat the same reasoning.

Thus, we have shown that all the transitions within N ′ can be fired. Due to the
soundness of N , since all the firing sequences of N ′ correspond to firing sequences of
N , and the number of tokens in each place from P in corresponding markings of N ′

and N coincide, the final marking can be reached from any reachable marking of N ′

and there are no reachable markings in N ′ with tokens in the final place o and some
other places.

ut

5.4 Using High-Level Constructs to Model Discovered Non-Local Constraints

In this subsection, we demonstrate how the discovered process models with non-local
constraints can be presented using high-level modeling languages, such as BPMN (Busi-
ness Process Model and Notation) [24]. Free-choice workflow nets can be modeled by
a core set of process modeling elements that includes start and end events, tasks, paral-
lel and choice gateways, and sequence flows. The equivalence of free-choice workflow
nets and process models based on the core set of elements is studied in [18,2]. Most
process modeling languages, such as BPMN, support these core elements. A BPMN
model corresponding to the discovered free-choice workflow net (shown in Figure 1) is
presented in Figure 11.

1/18/2020 diagram (6).svg

file:///C:/Users/akalenkova/Downloads/diagram (6).svg 1/1

notify client     send
 application

check 

application

create 

application
complete 

application

accept 
application

Fig. 11. A BPMN model that corresponds to the workflow net in Figure 1.

If a workflow net is not free-choice, then it cannot be presented using core ele-
ments only [18]. However, BPMN language offers additional high-level modeling con-
structs which can be used to model non-free-choice constraints. Figure 12 demonstrates
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a BPMN model that corresponds to a non-free-choice net (in Figure 3) constructed by
Algorithm 1.

1/18/2020 diagram (7).svg

file:///C:/Users/akalenkova/Downloads/diagram (7).svg 1/1

notify client    send 
application

check 
application

create 
application

complete 

application

accept 
application

sent by client

created by 

employee

sent by client

created by 
employee

Fig. 12. A BPMN model that corresponds to the workflow net presented in Figure 3.

In addition to core modeling elements, signal events and an event-based gateway are
used. The signal events capture the discovered non-local dependencies. For instance,
after send application task is performed, a signal sent by client is thrown. After that,
an event-based gateway is used to select a branch depending on which of the catching
signal event that immediately follows the gateway is fired. For example, if the type
of the caught event is signal and its value is sent by client , then task notify client is
performed.

6 Case Study

In this section, we demonstrate the results of applying our approach to synthetic and
real-life event logs. The approach is implemented as an Apromore [20] plugin called
“Add long-distance relations” and is available as part of Apromore Community Edi-
tion. 6 All the results were obtained in quasi real-time (in the order of milliseconds)
using Intel(R) Core(TM) i7-8550U CPU @1.80 GHz with 16 GB RAM.

6.1 Synthetic Event Logs

To assess the ability of our approach to automatically repair process models we have
built a set of workflow nets with non-local dependencies. An example of one of these
workflow nets is presented in Figure 13.

We simulated each of the workflow nets and generated event logs containing ac-
cepted traces. After that, from each event log L we discovered a free-choice workflow
net N using Split miner. Then our approach was applied to N and L producing an en-
hanced workflow net N ′ with additional constraints. To compare behaviors of N and
N ′ workflow nets, conformance checking techniques [26] assessing fitness (the share
of the log behavior accepted by a model) and precision (the share of the model behavior

6 https://apromore.org/platform/download/
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m

Fig. 13. A workflow net used for the synthesis of an event log.

captured by the log) were applied. In all the cases, both models N and N ′ accept all the
traces from L showing maximum fitness values of 1.0 (according to Theorem 2, if N
accepts a trace, thenN ′ also accepts this trace). Precision values as well as the structural
characteristic of the workflow nets are presented in Table 1. These results demonstrate
that our approach is able to automatically reveal hidden non-local constraints discover-
ing precise workflow nets when applied to synthetic event logs.

Event log #Transitions / #Transitions / Precision Precision
#Places in N #Places in N ′ (N,L) (N ′, L)

1 18 / 14 18 / 18 0.972 1.0
2 13 / 12 13 / 14 0.945 1.0
3 10 / 9 10 / 11 0.899 1.0
4 12 / 13 12 / 15 0.911 1.0
5 6 / 4 6 / 6 0.841 1.0

Table 1. Structural (number of transitions and number of places) and behavioural characteristics
(precision) of free-choice (N ) and enhanced (N ′) workflow nets.

At the same time, while other approaches for the discovery of non-free-choice work-
flow nets, such as α++ Miner [30] and the original Petri net synthesis technique [3] can
also synthesize precise workflow nets form this set of simple event logs, they often ei-
ther produce unsound workflow nets with dead transitions (in case of α++ Miner), or
fail to construct a model in a reasonable time (in case of the original synthesis approach)
when applied to real-life event logs. In the next subsection, we apply our approach to
a real-life event log showing that our approach can discover a more precise and sound
process model in a real-life setting. Note that α++ Miner produces a workflow net with
dead transitions, which does not accept any of the event log traces, and the original
synthesis approach fails to discover a Petri net from this real-life event log.

6.2 Real-life Event Log

The proposed approach was applied to a real-life BPIC’2017 event log7 of a loan appli-
cation process. We analyzed car loan applications which had not been cancelled and had
not passed the validation procedure at least once. The overall event log L after filtering

7 https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
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contains 59 unique traces8 and 12 events (each event can appear in the event log traces
several times).

Validating

Returned

Accepted

Incomplete

Pending

Complete Validating

Returned

Accepted

Incomplete

Pending

Complete

r1

r2

a. b.

Fig. 14. a. A fragment of the workflow net N discovered from the real-life event log by Split
miner. b. A fragment of the corresponding repaired workflow net N ′ with two places r1 and r2
added by Algorithm 1.

Figure 14 a. demonstrates a fragment of a workflow net N discovered from L by
Split miner. N does not accept all the traces from L. The transition system was con-
structed only from those traces of Lwhich are accepted byN . Algorithm 1 has revealed
that there is a false free-choice relation between transitions labeled by Accepted and
Returned events, and two additional places (regions) r1 and r2 were discovered and
inserted in the repaired workflow netN ′ (Figure 14 b.).N andN ′ have the same fitness
values (0.787), i.e., can accept the same share of traces from L, refer to Theorem 2.
While their precision values are different (0.806 and 0.866, for N and N ′ respectively).
Indeed, N ′ is more precise because it does not allow the sequence of events to be re-
peated more than once, and the repeating sequences are not presented in L traces ac-
cepted by N . The fulfillment of Theorem 4 conditions guarantees the soundness of N ′.

7 Conclusion and Future Work

This paper presented an automated repair approach for obtaining precise process models
under the presence of non-local dependencies. The approach identifies opportunities for
improving the process model by analyzing the process behavior recorded in the input
event log, and then uses goal-oriented region-based synthesis to discover new Petri net
fragments that introduce non-local dependencies.

The theoretical contributions of this paper have been implemented as an open-
source plugin of the Apromore process mining platform. This implementation has then
been used to provide preliminary experiment results. Based on the experiments con-
ducted so far, the proposed approach does not incur into significant performance penal-
ties in practice. This is achieved by restricting the use of region theory to very specific
situations.

8 In contrast to the notion of event log used in this paper, a real-life event log can contain dupli-
cate traces.
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We foresee different research directions arising from this work. First, implement-
ing the proposed approach for alternative region techniques like language-based [31,9]
or geometric [10,28], is an interesting avenue to explore. Second, evaluating the im-
pact that well-known problems with event logs, like noise or incompleteness, may have
on the approach, and proposing possible ways to alleviate/overcome these problems
should be explored. Finally, in this paper, we only presented preliminary experimental
results (e.g. we only tested the approach against a single, yet complex, real-life event
log). Therefore, a concrete next step to extend this work is to perform more extensive
experiments against automated discovery benchmarks such as [6].

Acknowledgments. This work was partly supported by the Australian Research Coun-
cil Discovery Project DP180102839, and by MINECO and FEDER funds under grant
TIN2017-86727-C2-1-R.
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